Source code for gftool.lattice.bethe

"""Bethe lattice with infinite coordination number.

This is in fact no real lattice, but a tree. It corresponds to a semi-circular
DOS.

:half_bandwidth: The half_bandwidth corresponds to a scaled nearest neighbor
                 hopping of `t=D/2`

"""
import numpy as np

from mpmath import mp
from scipy.special import jv

from gftool.precision import PRECISE_TYPES as _PRECISE_TYPES

_SMALL = np.finfo(np.float64).eps**0.25


[docs]def gf_z(z, half_bandwidth): r""" Local Green's function of Bethe lattice for infinite coordination number. .. math:: G(z) = 2(z - s\sqrt{z^2 - D^2})/D^2 where :math:`D` is the half bandwidth and :math:`s=sgn[ℑ{ξ}]`. See [georges1996]_. Parameters ---------- z : complex array_like or complex Green's function is evaluated at complex frequency `z`. half_bandwidth : float Half-bandwidth of the DOS of the Bethe lattice. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/2`. Returns ------- complex np.ndarray or complex Value of the Bethe Green's function. References ---------- .. [georges1996] Georges et al., Rev. Mod. Phys. 68, 13 (1996) https://doi.org/10.1103/RevModPhys.68.13 Examples -------- >>> ww = np.linspace(-1.5, 1.5, num=500) >>> gf_ww = gt.lattice.bethe.gf_z(ww, half_bandwidth=1) >>> import matplotlib.pyplot as plt >>> _ = plt.plot(ww, gf_ww.real, label=r"$\Re G$") >>> _ = plt.plot(ww, gf_ww.imag, '--', label=r"$\Im G$") >>> _ = plt.xlabel(r"$\omega/D$") >>> _ = plt.ylabel(r"$G*D$") >>> _ = plt.axhline(0, color='black', linewidth=0.8) >>> _ = plt.xlim(left=ww.min(), right=ww.max()) >>> _ = plt.legend() >>> plt.show() """ z_rel = np.array(z / half_bandwidth, dtype=np.complex256) try: complex_pres = np.complex256 if z.dtype in _PRECISE_TYPES else complex except AttributeError: complex_pres = complex gf_z = 2./half_bandwidth*z_rel*(1 - np.sqrt(1 - z_rel**-2)) return gf_z.astype(dtype=complex_pres, copy=False)
[docs]def gf_d1_z(z, half_bandwidth): """ First derivative of local Green's function of Bethe lattice for infinite coordination number. Parameters ---------- z : complex array_like or complex Green's function is evaluated at complex frequency `z`. half_bandwidth : float Half-bandwidth of the DOS of the Bethe lattice. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/2`. Returns ------- complex np.ndarray or complex Value of the derivative of the Green's function. See Also -------- gftool.lattice.bethe.gf_z """ z_rel_inv = np.array(half_bandwidth / z, dtype=np.complex256) try: complex_pres = np.complex256 if z.dtype in _PRECISE_TYPES else complex except AttributeError: complex_pres = complex sqrt = np.sqrt(1 - z_rel_inv**2) gf_d1 = 2. / half_bandwidth**2 * (1 - 1/sqrt) return gf_d1.astype(dtype=complex_pres, copy=False)
[docs]def gf_d2_z(z, half_bandwidth): """ Second derivative of local Green's function of Bethe lattice for infinite coordination number. Parameters ---------- z : complex array_like or complex Green's function is evaluated at complex frequency `z`. half_bandwidth : float Half-bandwidth of the DOS of the Bethe lattice. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/2`. Returns ------- complex np.ndarray or complex Value of the Green's function. See Also -------- gftool.lattice.bethe.gf_z """ z_rel = np.array(z / half_bandwidth, dtype=np.complex256) try: complex_pres = np.complex256 if z.dtype in _PRECISE_TYPES else complex except AttributeError: complex_pres = complex sqrt = np.sqrt(1 - z_rel**-2) gf_d2 = 2. / half_bandwidth**3 * z_rel * sqrt / (1 - z_rel**2)**2 return gf_d2.astype(dtype=complex_pres, copy=False)
[docs]def gf_z_inv(gf, half_bandwidth): r""" Inverse of local Green's function of Bethe lattice for infinite coordination number. .. math:: R(G) = (D/2)^2 G + 1/G where :math:`R(z) = G^{-1}(z)` is the inverse of the Green's function. Parameters ---------- gf : complex array_like or complex Value of the local Green's function. half_bandwidth : float Half-bandwidth of the DOS of the Bethe lattice. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/2`. Returns ------- complex np.ndarray or complex The inverse of the Bethe Green's function `gf_z(gf_z_inv(g, D), D)=g`. See Also -------- gftool.lattice.bethe.gf_z References ---------- .. [georges1996] Georges et al., Rev. Mod. Phys. 68, 13 (1996) https://doi.org/10.1103/RevModPhys.68.13 Examples -------- >>> ww = np.linspace(-1.5, 1.5, num=500) + 1e-4j >>> gf_ww = gt.lattice.bethe.gf_z(ww, half_bandwidth=1) >>> np.allclose(ww, gt.lattice.bethe.gf_z_inv(gf_ww, half_bandwidth=1)) True """ return (0.5 * half_bandwidth)**2 * gf + 1./gf
[docs]def hilbert_transform(xi, half_bandwidth): r""" Hilbert transform of non-interacting DOS of the Bethe lattice. The Hilbert transform is defined as: .. math:: \tilde{D}(ξ) = ∫_{-∞}^{∞}dϵ \frac{DOS(ϵ)}{ξ − ϵ} The lattice Hilbert transform is the same as the non-interacting Green's function. Parameters ---------- xi : complex array_like or complex Point at which the Hilbert transform is evaluated. half_bandwidth : float Half-bandwidth of the DOS of the Bethe lattice. Returns ------- complex np.ndarray or complex Hilbert transform of `xi`. See Also -------- gftool.lattice.bethe.gf_z Notes ----- Relation between nearest neighbor hopping `t` and half-bandwidth `D`: .. math:: 2t = D """ return gf_z(xi, half_bandwidth)
[docs]def dos(eps, half_bandwidth): r""" DOS of non-interacting Bethe lattice for infinite coordination number. Parameters ---------- eps : float array_like or float DOS is evaluated at points `eps`. half_bandwidth : float Half-bandwidth of the DOS, DOS(| `eps` | > `half_bandwidth`) = 0. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/2`. Returns ------- float np.ndarray or float The value of the DOS. See Also -------- gftool.lattice.bethe.dos_mp : Multi-precision version suitable for integration. References ---------- .. [economou2006] Economou, E. N. Green's Functions in Quantum Physics. Springer, 2006. Examples -------- >>> eps = np.linspace(-1.1, 1.1, num=500) >>> dos = gt.lattice.bethe.dos(eps, half_bandwidth=1) >>> import matplotlib.pyplot as plt >>> _ = plt.plot(eps, dos) >>> _ = plt.xlabel(r"$\epsilon/D$") >>> _ = plt.ylabel(r"DOS * $D$") >>> _ = plt.axvline(0, color='black', linewidth=0.8) >>> _ = plt.ylim(bottom=0) >>> _ = plt.xlim(left=eps.min(), right=eps.max()) >>> plt.show() """ eps_rel = np.asarray(eps / half_bandwidth) dos = np.zeros_like(eps_rel) nonzero = (abs(eps_rel) < 1) | np.iscomplex(eps) dos[nonzero] = 2. / (np.pi*half_bandwidth) * np.sqrt(1 - eps_rel[nonzero]**2) return dos
# ∫dϵ ϵ^m DOS(ϵ) for half-bandwidth D=1 # from: integral of dos_mp with mp.workdps(100) # for m in range(0, 22, 2): # with mp.workdps(100): # print(mp.quad(lambda eps: 2 * eps**m * dos_mp(eps), [0, 1])) # rational numbers obtained by mp.identify dos_moment_coefficients = { 2: 0.25, 4: 0.125, 6: 5/64, 8: 7/128, 10: 21/512, 12: 0.0322265625, 14: 0.02618408203125, 16: 0.021820068359375, 18: 0.01854705810546875, 20: 0.016017913818359375, }
[docs]def dos_moment(m, half_bandwidth): """ Calculate the `m` th moment of the Bethe DOS. The moments are defined as :math:`∫dϵ ϵ^m DOS(ϵ)`. Parameters ---------- m : int The order of the moment. half_bandwidth : float Half-bandwidth of the DOS of the Bethe lattice. Returns ------- float The `m` th moment of the Bethe DOS. Raises ------ NotImplementedError Currently only implemented for a few specific moments `m`. See Also -------- gftool.lattice.bethe.dos """ if m % 2: # odd moments vanish due to symmetry return 0 try: return dos_moment_coefficients[m] * half_bandwidth**m except KeyError as keyerr: raise NotImplementedError('Calculation of arbitrary moments not implemented.') from keyerr
[docs]def dos_mp(eps, half_bandwidth=1): r""" Multi-precision DOS of non-interacting Bethe lattice for infinite coordination number. This function is particularly suited to calculate integrals of the form :math:`∫dϵ DOS(ϵ)f(ϵ)`. Parameters ---------- eps : mpmath.mpf or mpf_like DOS is evaluated at points `eps`. half_bandwidth : mpmath.mpf or mpf_like Half-bandwidth of the DOS, DOS(| `eps` | > `half_bandwidth`) = 0. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/2`. Returns ------- mpmath.mpf The value of the DOS. See Also -------- gftool.lattice.bethe.dos : Vectorized version suitable for array evaluations. References ---------- .. [economou2006] Economou, E. N. Green's Functions in Quantum Physics. Springer, 2006. Examples -------- Calculate integrals: >>> from mpmath import mp >>> mp.quad(gt.lattice.bethe.dos_mp, [-1, 1]) mpf('1.0') >>> eps = np.linspace(-1.1, 1.1, num=500) >>> dos_mp = [gt.lattice.bethe.dos_mp(ee, half_bandwidth=1) for ee in eps] >>> dos_mp = np.array(dos_mp, dtype=np.float64) >>> import matplotlib.pyplot as plt >>> _ = plt.plot(eps, dos_mp) >>> _ = plt.xlabel(r"$\epsilon/D$") >>> _ = plt.ylabel(r"DOS * $D$") >>> _ = plt.axvline(0, color='black', linewidth=0.8) >>> _ = plt.ylim(bottom=0) >>> _ = plt.xlim(left=eps.min(), right=eps.max()) >>> plt.show() """ eps, half_bandwidth = mp.mpf(eps), mp.mpf(half_bandwidth) if mp.fabs(eps) > half_bandwidth: return mp.mpf('0') return 2 / (mp.pi * half_bandwidth) * mp.sqrt(-mp.powm1(eps / half_bandwidth, mp.mpf('2')))
[docs]def gf_ret_t(tt, half_bandwidth, center=0): r""" Retarded-time local Green's function of Bethe lattice with Z=∞. .. math:: G(t) = -2j * Θ(t) * J_1(Dt)/(Dt) where :math:`D` is the half bandwidth and :math:`J_1(t)` is the Bessel function of first kind. Parameters ---------- tt : float array_like or float Green's function is evaluated at time `tt`. half_bandwidth : float Half-bandwidth of the DOS of the Bethe lattice. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/2`. center : float Position of the center of the Bethe DOS. This parameter is **not** given in units of `half_bandwidth`. Returns ------- complex np.ndarray or complex Value of the retarded-time Bethe Green's function. Examples -------- >>> tt = np.linspace(0, 50, 1500) >>> gf_tt = gt.lattice.bethe.gf_ret_t(tt, half_bandwidth=1) >>> import matplotlib.pyplot as plt >>> _ = plt.axhline(0, color='black', linewidth=0.8) >>> _ = plt.plot(tt, gf_tt.real, label=r"$\Re G$") >>> _ = plt.plot(tt, gf_tt.imag, '--', label=r"$\Im G$") >>> _ = plt.xlabel(r"$t*D$") >>> _ = plt.ylabel(r"$G$") >>> _ = plt.xlim(left=tt.min(), right=tt.max()) >>> _ = plt.legend() >>> plt.show() """ tt = np.asarray(half_bandwidth*tt) gf = np.zeros_like(tt, dtype=complex) retard = tt.real >= 0 small = retard & (abs(tt) < _SMALL) # Taylor expansion for small tt, to avoid 1/tt tt2 = tt[small]**2 gf[small] = -1j*(1 - 1/8*tt2 + 1/192*tt2**2) big = retard & ~small gf[big] = -2j * jv(1, tt[big]) / tt[big] if np.any(center != 0): return gf*np.exp(-1j*center*tt) return gf