Source code for gftool.lattice.fcc

r"""3D face-centered cubic (fcc) lattice.

The dispersion of the 3D face-centered cubic lattice is given by

.. math::

   ϵ_{k_x,k_y,k_z} = 4t [\cos(k_x/2)\cos(k_y/2) + \cos(k_x/2)\cos(k_z/2) + \cos(k_y/2) \cos(k_z/2)]

which takes values in :math:`ϵ_{k_x, k_y, k_z} ∈ [-4t, +12t] = [-0.5D, +1.5D]`.

:half_bandwidth: The half_bandwidth corresponds to a nearest neighbor hopping
                 of `t=D/8`.

"""
import numpy as np

from mpmath import mp

from gftool._util import _u_ellipk


def _signed_sqrt(z):
    """Square root with correct sign for fcc lattice."""
    # sign = np.where((z.real < 0) & (z.imag < 0), -1, 1)
    sign = np.where(z.real < 0, -1, 1)
    factor = np.where(sign == 1, 1, -1j)
    return factor * np.lib.scimath.sqrt(sign*z)


[docs]def gf_z(z, half_bandwidth): r""" Local Green's function of the 3D face-centered cubic (fcc) lattice. Note, that the spectrum is asymmetric and in :math:`[-D/2, 3D/2]`, where :math:`D` is the half-bandwidth. Has a van Hove singularity at `z=-half_bandwidth/2` (divergence) and at `z=0` (continuous but not differentiable). Implements equations (2.16), (2.17) and (2.11) from [morita1971]_. Parameters ---------- z : complex np.ndarray or complex Green's function is evaluated at complex frequency `z`. half_bandwidth : float Half-bandwidth of the DOS of the face-centered cubic lattice. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/8`. Returns ------- complex np.ndarray or complex Value of the face-centered cubic lattice Green's function. References ---------- .. [morita1971] Morita, T., Horiguchi, T., 1971. Calculation of the Lattice Green’s Function for the bcc, fcc, and Rectangular Lattices. Journal of Mathematical Physics 12, 986–992. https://doi.org/10.1063/1.1665693 Examples -------- >>> ww = np.linspace(-1.6, 1.6, num=501, dtype=complex) >>> gf_ww = gt.lattice.fcc.gf_z(ww, half_bandwidth=1) >>> import matplotlib.pyplot as plt >>> _ = plt.axvline(-0.5, color='black', linewidth=0.8) >>> _ = plt.axvline(0, color='black', linewidth=0.8) >>> _ = plt.axhline(0, color='black', linewidth=0.8) >>> _ = plt.plot(ww.real, gf_ww.real, label=r"$\Re G$") >>> _ = plt.plot(ww.real, gf_ww.imag, '--', label=r"$\Im G$") >>> _ = plt.ylabel(r"$G*D$") >>> _ = plt.xlabel(r"$\omega/D$") >>> _ = plt.xlim(left=ww.real.min(), right=ww.real.max()) >>> _ = plt.legend() >>> plt.show() """ D = half_bandwidth / 2 z = np.asarray(1 / D * z) retarded = z.imag > 0 z = np.where(retarded, np.conj(z), z) # calculate advanced only, and use symmetry zp1 = z + 1 zp1_pow = _signed_sqrt(zp1)**-3 sum1 = 4 * _signed_sqrt(z) * zp1_pow sum2 = (z - 1) * _signed_sqrt(z - 3) * zp1_pow m_p = 0.5*(1 + sum1 - sum2) # eq. (2.11) m_m = 0.5*(1 - sum1 - sum2) # eq. (2.11) kii = np.asarray(_u_ellipk(m_p)) kii[m_p.imag < 0] += 2j*_u_ellipk(1 - m_p[m_p.imag < 0]) # eq (2.17) gf = 4 / (np.pi**2 * D * zp1) * _u_ellipk(m_m) * kii # eq (2.16) return np.where(retarded, np.conj(gf), gf) # return to retarded by symmetry
[docs]def hilbert_transform(xi, half_bandwidth): r""" Hilbert transform of non-interacting DOS of the face-centered cubic lattice. The Hilbert transform is defined .. math:: \tilde{D}(ξ) = ∫_{-∞}^{∞}dϵ \frac{DOS(ϵ)}{ξ − ϵ} The lattice Hilbert transform is the same as the non-interacting Green's function. Parameters ---------- xi : complex np.ndarray or complex Point at which the Hilbert transform is evaluated. half_bandwidth : float Half-bandwidth of the DOS of the 3D face-centered cubic lattice. Returns ------- complex np.ndarray or complex Hilbert transform of `xi`. See Also -------- gftool.lattice.fcc.gf_z Notes ----- Relation between nearest neighbor hopping `t` and half-bandwidth `D` .. math:: 8t = D """ return gf_z(xi, half_bandwidth)
[docs]def dos(eps, half_bandwidth): r""" DOS of non-interacting 3D face-centered cubic lattice. Has a van Hove singularity at `z=-half_bandwidth/2` (divergence) and at `z=0` (continuous but not differentiable). Parameters ---------- eps : float np.ndarray or float DOS is evaluated at points `eps`. half_bandwidth : float Half-bandwidth of the DOS, DOS(`eps` < -0.5*`half_bandwidth`) = 0, DOS(1.5*`half_bandwidth` < `eps`) = 0. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/8`. Returns ------- float np.ndarray or float The value of the DOS. See Also -------- gftool.lattice.fcc.dos_mp : Multi-precision version suitable for integration. References ---------- .. [morita1971] Morita, T., Horiguchi, T., 1971. Calculation of the Lattice Green’s Function for the bcc, fcc, and Rectangular Lattices. Journal of Mathematical Physics 12, 986–992. https://doi.org/10.1063/1.1665693 Examples -------- >>> eps = np.linspace(-1.6, 1.6, num=501) >>> dos = gt.lattice.fcc.dos(eps, half_bandwidth=1) >>> import matplotlib.pyplot as plt >>> _ = plt.axvline(0, color='black', linewidth=0.8) >>> _ = plt.axvline(-0.5, color='black', linewidth=0.8) >>> _ = plt.plot(eps, dos) >>> _ = plt.xlabel(r"$\epsilon/D$") >>> _ = plt.ylabel(r"DOS * $D$") >>> _ = plt.ylim(bottom=0) >>> _ = plt.xlim(left=eps.min(), right=eps.max()) >>> plt.show() """ eps = np.asarray(eps) singular = eps == -0.5*half_bandwidth finite = (-0.5*half_bandwidth < eps) & (eps < 1.5*half_bandwidth) & ~singular dos_ = np.zeros_like(eps) dos_[finite] = 1 / np.pi * gf_z(eps[finite], half_bandwidth=half_bandwidth).imag dos_[singular] = np.inf return abs(dos_) # at 0.5D wrong sign
# ∫dϵ ϵ^m DOS(ϵ) for half-bandwidth D=1 # from: integral of dos_mp with mp.workdps(100) # for m in range(0, 21, 1): # with mp.workdps(100): # print(mp.quad(lambda eps: eps**m * dos_mp(eps), [mp.mpf('-0.5'), 0, 1]) # rational numbers obtained by mp.identify dos_moment_coefficients = { 0: 1, 1: 0, 2: 3/16, 3: 3/32, 4: 135/1024, 5: 135/1024, 6: 0.1611328125, 7: 0.1922607421875, 8: 0.24070143699646, 9: 0.305163860321045, 10: 0.394462153315544, 11: 0.516299419105052, 12: 0.683690124191343, 13: 0.913928582333027, 14: 1.23181895411108, 15: 1.67210463207448, 16: 2.28395076888283, 17: 3.13686893977359, 18: 4.32941325997849, 19: 6.00152324929046, 20: 8.35226611969712, }
[docs]def dos_moment(m, half_bandwidth): """ Calculate the `m` th moment of the face-centered cubic DOS. The moments are defined as :math:`∫dϵ ϵ^m DOS(ϵ)`. Parameters ---------- m : int The order of the moment. half_bandwidth : float Half-bandwidth of the DOS of the 3D face-centered cubic lattice. Returns ------- float The `m` th moment of the 3D face-centered cubic DOS. Raises ------ NotImplementedError Currently only implemented for a few specific moments `m`. See Also -------- gftool.lattice.fcc.dos """ try: return dos_moment_coefficients[m] * half_bandwidth**m except KeyError as keyerr: raise NotImplementedError('Calculation of arbitrary moments not implemented.') from keyerr
def _signed_mp_sqrt(eps): """Square root with correct sign for fcc lattice.""" if eps >= 0: return mp.sqrt(eps) return -1j*mp.sqrt(-eps)
[docs]def dos_mp(eps, half_bandwidth=1): r""" Multi-precision DOS of non-interacting 3D face-centered cubic lattice. Has a van Hove singularity at `z=-half_bandwidth/2` (divergence) and at `z=0` (continuous but not differentiable). This function is particularity suited to calculate integrals of the form :math:`∫dϵ DOS(ϵ)f(ϵ)`. If you have problems with the convergence, consider using :math:`∫dϵ DOS(ϵ)[f(ϵ)-f(-1/2)] + f(-1/2)` to avoid the singularity. Parameters ---------- eps : mpmath.mpf or mpf_like DOS is evaluated at points `eps`. half_bandwidth : mpmath.mpf or mpf_like Half-bandwidth of the DOS, DOS(`eps` < -0.5*`half_bandwidth`) = 0, DOS(1.5*`half_bandwidth` < `eps`) = 0. The `half_bandwidth` corresponds to the nearest neighbor hopping `t=D/8`. Returns ------- mpmath.mpf The value of the DOS. See Also -------- gftool.lattice.fcc.dos : Vectorized version suitable for array evaluations. References ---------- .. [morita1971] Morita, T., Horiguchi, T., 1971. Calculation of the Lattice Green’s Function for the bcc, fcc, and Rectangular Lattices. Journal of Mathematical Physics 12, 986–992. https://doi.org/10.1063/1.1665693 Examples -------- Calculate integrals: >>> from mpmath import mp >>> unit = mp.quad(gt.lattice.fcc.dos_mp, [-0.5, 0, 1.5]) >>> mp.identify(unit) '1' >>> eps = np.linspace(-1.6, 1.6, num=501) >>> dos_mp = [gt.lattice.fcc.dos_mp(ee, half_bandwidth=1) for ee in eps] >>> dos_mp = np.array(dos_mp, dtype=np.float64) >>> import matplotlib.pyplot as plt >>> _ = plt.axvline(0, color='black', linewidth=0.8) >>> _ = plt.axvline(-0.5, color='black', linewidth=0.8) >>> _ = plt.plot(eps, dos_mp) >>> _ = plt.xlabel(r"$\epsilon/D$") >>> _ = plt.ylabel(r"DOS * $D$") >>> _ = plt.ylim(bottom=0) >>> _ = plt.xlim(left=eps.min(), right=eps.max()) >>> plt.show() """ D = mp.mpf(half_bandwidth) * mp.mpf('1/2') eps = mp.mpf(eps) / D if 3 < eps < -1: return mp.mpf('0') if eps == -1: return mp.inf epsp1 = eps + 1 epsp1_pow = _signed_mp_sqrt(epsp1)**-3 sum1 = 4 * _signed_mp_sqrt(eps) * epsp1_pow sum2 = (eps - 1) * _signed_mp_sqrt(eps - 3) * epsp1_pow m_p = mp.mpf('0.5')*(1 + sum1 - sum2) # eq. (2.11) m_m = mp.mpf('0.5')*(1 - sum1 - sum2) # eq. (2.11) kii = mp.ellipk(m_p) if m_p.imag < 0: kii += 2j * mp.ellipk(1 - m_p) # eq (2.17) return abs(4 / (mp.pi**3 * D * epsp1) * (_u_ellipk(m_m) * kii).imag) # eq (2.16)